Intelligent Construction Data Management (ICDM) Guidelines

For use with Veta 5.0+

Many Systems ONE SOFTWARE
Intelligent compaction (IC) is an emerging technology, and for some applications it is mature enough for implementation in field compaction of pavement materials. IC data are often massive and new to DOTs and industries. Thus, it requires practical guidelines and protocol to assist DOTs and industries to properly manage the IC data in order to provide support for decision-making and quality control (QC) and acceptance. Therefore, there is an immediate need to develop IC Data Guidelines to fulfill these needs, and on a local level, to assist with Minnesota’s current IC implementation efforts. This document also includes paver-mounted profiles, test rolling. It will include other Intelligent Construction Technologies (ICT) once the data are compatible with Veta. Therefore, the document is now named as “Intelligent Construction Data Management (ICDM) Guidelines”

This document is to provide guidelines for IC data viewing and export in order to make use of a third party, independent ICDM, Veta. This document is compatible with Veta 5.0+.

Key words
- Compaction, intelligent compaction, roller, data, viewing, export, analysis, pavement performance.

Distribution Statement
No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

MN/RC-2018-01-___
2. Government Accession No.
N/A
3. Recipient Catalog No.
N/A
4. Title and Subtitle
Intelligent Construction Data Management (ICDM) Guidelines – For Use with Veta 5.0+
5. Report Date
September 2018
6. Performing Organization Code
N/A
7. Author(s)
George Chang, Jason Dick, Transtec Group Inc.
N/A
9. Performing Organization Name and Address
The Transtec Group, Inc.
6111 Balcones Drive
Austin TX 78731
10. Work Unit No. (TRAIS)
N/A
11. Contract or Grant No.
Multiple MnDOT/TPF Contracts
12. Sponsoring Agencies
Minnesota Dept. of Transportation
Consultant Services Section, Mail Stop 680
395 John Ireland Boulevard
St. Paul, Minnesota 55155
13. Type of Report and Period Covered
Final report (living document)
N/A
15. Supplementary Notes
16. Abstract
Intelligent compaction (IC) is an emerging technology, and for some applications it is mature enough for implementation in field compaction of pavement materials. IC data are often massive and new to DOTs and industries. Thus, it requires practical guidelines and protocol to assist DOTs and industries to properly manage the IC data in order to provide support for decision-making and quality control (QC) and acceptance. Therefore, there is an immediate need to develop IC Data Guidelines to fulfill these needs, and on a local level, to assist with Minnesota’s current IC implementation efforts. This document also includes paver-mounted profiles, test rolling. It will include other Intelligent Construction Technologies (ICT) once the data are compatible with Veta. Therefore, the document is now named as “Intelligent Construction Data Management (ICDM) Guidelines”
This document is to provide guidelines for IC data viewing and export in order to make use of a third party, independent ICDM, Veta. This document is compatible with Veta 5.0+.

17. Key words
Compaction, intelligent compaction, roller, data, viewing, export, analysis, pavement performance.

18. Distribution Statement
No restrictions. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161

19. Security Classif. (of this report)
Unclassified
20. Security Classif. (of this page)
Unclassified
21. No. of Pages
22. Price
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol	**When You Know**	**Multiply By**	**To Find**	**Symbol**

LENGTH
- `in` inches | 25.4 | millimeters | mm
- `ft` feet | 0.305 | meters | m
- `yd` yards | 0.914 | meters | m
- `mi` miles | 1.61 | kilometers | km

AREA
- `in²` square inches | 645.2 | square millimeters | mm²
- `ft²` square feet | 0.093 | square meters | m²
- `yd²` square yard | 0.836 | square meters | m²
- `ac` acres | 0.405 | hectares | ha
- `mi²` square miles | 2.59 | square kilometers | km²

VOLUME
- `fl oz` fluid ounces | 29.57 | milliliters | mL
- `gal` gallons | 3.785 | liters | L
- `ft³` cubic feet | 0.028 | cubic meters | m³
- `yd³` cubic yards | 0.765 | cubic meters | m³

NOTE: volumes greater than 1000 L shall be shown in m³

MATERIAL
- `oz` ounces | 28.35 | grams | g
- `lb` pounds | 0.454 | kilograms | kg
- `T` short tons (2000 lb) | 0.907 | megagrams (or “metric ton”) Mg (or “t”)

TEMPERATURE (exact degrees)
- °F Fahrenheit | (F-32)/9 | Celsius | °C
- or (F-32)/1.8

ILLUMINATION
- `fc` foot-candles | 10.76 | lux | lx
- `fl` foot-Lamberts | 3.426 | candela/m² | cd/m²

FORCE and PRESSURE or STRESS
- `lbf` poundforce | 4.45 | newtons | N
- `lbf/in²` poundforce per square inch | 6.89 | kilopascals | kPa

APPROXIMATE CONVERSIONS FROM SI UNITS

LENGTH
- `mm` millimeters | 0.039 | inches | in
- `m` meters | 3.28 | feet | ft
- `m` meters | 1.09 | yards | yd
- `km` kilometers | 0.621 | miles | mi

AREA
- `mm²` square millimeters | 0.0016 | square inches | in²
- `m²` square meters | 10.764 | square feet | ft²
- `m²` square meters | 1.195 | square yards | yd²
- `ha` hectares | 2.47 | acres | ac
- `km²` square kilometers | 0.386 | square miles | mi²

VOLUME
- `mL` milliliters | 0.034 | fluid ounces | fl oz
- `L` liters | 0.264 | gallons | gal
- `m³` cubic meters | 35.314 | cubic feet | ft³
- `m³` cubic meters | 1.307 | cubic yards | yd³

MASS
- `g` grams | 0.035 | ounces | oz
- `kg` kilograms | 2.202 | pounds | lb
- `Mg (or "t")` megagrams (or “metric ton”) | 1.103 | short tons (2000 lb) | T

TEMPERATURE (exact degrees)
- °C Celsius | 1.8°C+32 | Fahrenheit | °F

ILLUMINATION
- `lx` lux | 0.0929 | foot-candles | fc
- `cd/m²` candela/m² | 0.2919 | foot-Lamberts | fl

FORCE and PRESSURE or STRESS
- `N` newtons | 0.225 | poundforce | lbf
- `kPa` kilopascals | 0.145 | poundforce per square inch | lbf/in²

SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)
Intelligent Construction Data Management Guidelines

For Use with Veta 5.0+

Prepared by:
George Chang and Jason Dick, The Transtec Group, Inc.
6111 Balcones Dr. Austin, TX 78731

For

Minnesota Department of Transportation
Office of Materials and Road Research
395 John Ireland Blvd, St. Paul, MN 55155

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation. This report does not contain a standard or specified technique. The authors and the Minnesota Department of Transportation do not endorse products or manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to this report.
TABLE OF CONTENTS

Acknowledgement .. 8
Introduction 9
Terminology 10
 Terms .. 10
 Acronym ... 10
IC Data Basics11
 IC Roller Systems ... 11
 IC Data Types .. 20
 IC Data Contents .. 24
PMTP Data Elements .. 27
 PMTP Systems .. 27
 PMTP Data Types .. 29
 PMTP Data Contents ... 30
AASHTO ICT Data Standard .. 32
BOMAG IC Data ... 34
 System Summary ... 34
 Viewing Program ... 35
 Data Organization ... 36
 Data Export Procedures ... 36
Caterpillar IC Data ... 38
 System Summary ... 38
 Viewing Programs ... 39
 Data Management .. 39
 Data Export Procedures ... 41
Dynapac IC Data ... 44
 System Summary ... 44
 Viewing Program ... 45
 Data Organization ... 45
 Data Export Procedures ... 45
Hamm/Wirtgen IC Data ... 47
 System Summary ... 47
 Viewing Program ... 47
 Data Organization ... 48
 Data Export Procedures ... 48
LEICA GEOSYSTEMS IC Data .. 51
 System Summary ... 51
 Viewing Program ... 52
 Data Export Procedures ... 53
MOBA MCA-3000 ... 56
 System Summary ... 56
 Viewing Program ... 58
 Data Management ... 58
 Data Export Procedure ... 59
Sakai IC Data 62
 System Summary ... 62
 Viewing Program ... 63
 Data Export Procedures ... 64
Trimble IC Data .. 67
 System Summary ... 67
Acknowledgement

The authors would like to acknowledge the funding from MNDOT (for version 1.0 and 2.0+) and FHWA (for version 1.0) to support the development of this critical and essential document for implementing intelligent compaction. The development of Veta is steered and sponsored by the Transportation Pooled Fund Study TPF-5(334) “Enhancement to the Intelligent Construction Data Management System (Veta) and Implementation”.

The authors would also like to specifically acknowledge the following individuals for their contribution to this document:

- MnDOT: Curt Turgeon, Glenn Engstrom, Terry Beaudry, Rebecca Embacher, Greg Johnson, Randy Tilseth, James Schneider, Michael Johnson, Jackson Mejia.
- BOMAG: Bert Erdmann, Dave Dennison (USA); Hans-Josef Kloubert, Peter Decker, and Hans-Jurgen Wagner (Germany).
- Caterpillar: Bryan Downing, Todd Mansell, Dave King, Allen DeClerk, Kevin Adams, Mark Tarvin, Nick Oetken.
- HAMM/Wirtgen: Richard Evans, Tim Kowalski, Josh Weston (USA); Patrick Gärtner, Sebastian Villwock, Jens Ruprecht and Axel Romer (Germany).
- Dynapac/FAYAT Group: Tim Hoffman, Matt Nelson and Gert Hannson (USA); Fredrik Akesson (Sweden).
- Sakai: Denver Weinstiger (USA); Yuki Tsukimoto, and Kei Uchiyama (Japan).
- Trimble: Kevin Garcia, Jeff Drake, Chris Wheeler, Tim McClannahan, Pete Kaz, Bruce Hanes (USA); Russell Moffat, Jeff Tait, and Grant Higgins (New Zealand).
- TOPCON: Jan Mennink, Peter Painter, Jim Preston.
- Volvo: Mark Eckert, Bill Laing, Dan Weaver, Fares Beainy.
- MOBA (PMTP): Paul Angerhofer, James Lano, David Shelstad (USA); Mirko Marx (Germany).
Introduction

This document provides a guideline for Intelligent Construction Data Management such as intelligent compaction (IC), paver-mounted thermal profiling (PMTP). Specific steps for transferring, viewing data and export from various ICT vendors to Veta compatible formats are included.

The goal of this document is to assist end users to export ICT data files from a vendor-specific program. Therefore, these exported files can be imported to Veta compatible formats. Veta can import data from various intelligent compaction (IC) machines and MOBA PAVE-IR thermal bars and scanners to perform editing, data layering, point testing, and analysis. Veta displays compaction information in easy-to-read formats, including graphs and maps. Veta is required in the Federal Highway Administration’s generic IC specifications and AASHTO IC Specifications for soils, and asphalt materials. Veta is also increasingly adopted by US Departments of Transportation. Veta has been sponsored by MNDOT and Transportation Pooled Fund Study TPF-5(334) “Enhancement to the Intelligent Construction Data Management System (Veta) and Implementation”.

Further information regarding Veta is available at www.IntelligentCompaction.com/veta/
Terminology

Terms

- **All passes data**: Gridded IC data that contain measurements from all passes
- **Drum passes**: Pass count based on drums
- **Final coverage data**: Gridded IC data that contain the last pass measurements
- **Gridded data**: Processed data after mesh refinement
- **Machine passes**: Pass count based on machines
- **Pass Count**: Number of roller passes for a given gridded data mesh
- **Raw data**: Ungridded raw IC data recorded during compaction operations

Acronym

- **BCM**: Bomag Compaction Manager software
- **CCV**: Compaction Control Value from the Sakai IC system
- **CIS**: Sakai Compaction Information System
- **CMV**: Compaction Meter Value from the Caterpillar and Dynapac IC system
- **DCA**: Dynapac Dynamic Compaction Analyzer software
- **EDV**: Estimated density values from VOLVO
- **Evib**: Vibration modulus from the Bomag IC system
- **HCQ**: HAMM Compaction Quality software
- **HMV**: HAMM Measurement Value (similar to CMV).
- **ICMV**: Generic term for Intelligent Compaction Measurement Value
- **MCI**: MOBA compaction index
- **MDP**: Machine Drive Power value from the Caterpillar IC system
- **PPM**: MOBA Pave-IR pave project manager software
- **VL**: Trimble VisionLink web solution
IC Data Basics

IC Roller Systems

Intelligent Compaction refers to the compaction of road materials, such as soils, aggregate bases, or asphalt pavement materials, using modern vibratory rollers equipped with an in-situ measurement system and feedback control. Global Positioning System (GPS) based mapping is included, as well as software that automates documentation of the results. By integrating measurement, documentation, and control systems, the IC rollers allow for real-time monitoring and correction of the compaction process. IC rollers also maintain a continuous record of (nominally) color-coded plots that indicate the number of roller passes, roller-generated material stiffness measurements, and precise location of the roller. The sampling frequency is normally between 5 to 10 Hz, i.e., once every second or 2 seconds. An example of such an IC roller system is illustrated in Figure 1.

![Bomag VarioControl System](image)

(Courtesy of Bomag)

Figure 1. Bomag VarioControl System

To understand IC data, it is important to understand how IC rollers work first.
IC rollers utilize the framework of a vibratory roller to provide monitoring of IC measurements as a real-time “visual feedback” to roller operators. IC rollers, if outfitted with “auto-feedback systems”, would automatically adjust roller vibration amplitudes and/or frequencies to optimize compaction. An example of such IC auto-feedback systems is illustrated in Figure 2.

![Figure 2. Case/Ammann auto-feedback system.](image)

The precise location of the roller, speed, and number of passes over a given location are mapped using GPS. These systems are commonly used to establish grade and to control other pieces of equipment.

Compaction meters or accelerometers are mounted in or about the drum to monitor applied compaction effort, frequency, and response from the material being compacted. The readings from this instrumentation determine the effectiveness of the compaction process. The methodology to calculate material response to compaction is often proprietary resulting in various types of intelligent compaction measurement values (ICMV).

A calibration procedure is often used to correlate the ICMV to a material modulus or density measured by other (in-situ) test devices. Compaction curves from ICMVs and in-situ test results can be established to indicate the target ICMV and optimum roller passes (see an example in Figure 3).
Figure 3. Calibration test – with compaction growth curves vs. pass count for Case/Ammann ICMV (k_{SPD}) and in-situ point measurements (ICPF TXDOT demo).

For asphalt IC rollers, additional temperature instrumentation is used to monitor the surface temperature of the asphalt pavement material. This is critical as vibratory compaction within certain temperature ranges (such as too-cold-to-compact temperatures or tender zones for Superpave mixtures) can have adverse effects. An example of IC temperature instrumentation is illustrated in Figure 4 to measure asphalt surface temperatures by using an infra-red sensor.

Figure 4. Infrared temperature sensor on a Sakai IC roller.

Check on the IC website for available single drum IC rollers (http://www.intelligentcompaction.com/equipment/single-drum-soil-rollers/) and double-drum IC rollers (http://www.intelligentcompaction.com/equipment/double-drum-asphalt-rollers/).
Positioning Requirements

High precision positioning data collection is the most critical element in IC implementation. To ensure accurate and consistent data collection, the following capabilities for the roller positioning systems are required:

- RTK-GPS (Real Time Kinematic-GPS) systems or equivalent on IC rollers with either ground-based GPS base station or network type of reference system.
- Recommended positioning system reports and records values in Northing/Easting or longitude/latitude in UTM coordinates or state plane coordinates for the project site.
- If an offset is necessary between GPS antenna and the ICMV measuring drum(s), it must be input and validated.
- Hand-held rovers are required for both validation tests and point measurements at locations where in-situ tests are performed using conventional methods.

Figure 5. Base Station for Ground-based RTK GPS.

Figure 6. Network Type of RTK GPS.
Figure 7. RTK GPS receiver and antenna on a Sakai roller (ICPF MnDOT demo).

Figure 8. Offsets from antenna for a Sakai roller.
The UTM (Universal Transverse Mercator) coordinate system zone is designated when the UTM grids are produced based on the geodetic GPS data, longitudes and latitudes. The conversion is based on The World Geodetic System 84 (WGS84). US State plane is also allowable which is based on North American Datum of 1983 (NAD83). See Figure 10 for the UTM zones in the US and Figure 11 in the world. Users can normally select the desired UTM zone in the settings of vendors IC field software program.

Figure 9. An example of network type RTK GPS - OmniSTAR.

Figure 10. UTM Zones in the US.
Figure 11. UTM Zones in the World.

Figure 12. US State Plane Coordinate (SPC) Zones.
Technical assistance by roller vendors or GPS equipment manufacturers is often recommended:

- On-site staff with sufficient technical knowledge to set up roller mounted GPS equipment and provide input for equipment operation during the first day of the field operation.

- Contact information for personnel with sufficient technical knowledge to assist the authors with technical questions during field testing when on-site technical assistance is not available.

Use of a GPS base station radio operating at 900MHz or higher is recommended (see Figure 13). Many GPS vendors offer solutions such as Trimble, TopCon, Leica, and etc. In addition to setting up GPS base stations, there can also be other options such as virtual reference station (VRS) and internet-based correction signals. Prior to the beginning of IC data collection during the compaction operation, the GPS setup must be validated using a survey grade hand-held GPS “rover”unit to ensure that the roller-mounted GPS is providing accurate positioning data. (Figure 14).

![Figure 13. A Trimble GPS base station (ICPF MnDOT demo).](image)

(Courtesy of MnDOT)

![Figure 14. Validation of roller mounted GPS with a hand-held rover at a marked location on the ground.](image)

(Courtesy of MnDOT)
The GPS setup and verification can be summarized in the following steps:

1. Select a Coordinate System
2. Select Location(s) for GPS Base Station
3. Set up a GPS Base Station (Initialization takes 30 to 60 seconds, and re-initialization when machine first powers up and loss-of-lock)
4. Set up Hand-held GPS Receiver (rover)
5. Set up GPS Receiver on IC Roller
6. Verify GPS Measurements
 - Move the IC roller around until the GPS header computation is initialized.
 - Move the IC roller and park at a selected location. Record the GPS measurements from the IC roller ensuring the distance offsets are applied so that the GPS coordinate is at the center or at left/right edges of the front drum.
 - Mark two locations on the ground adjacent to the right and left edges of the front drum contact patch. Move the IC roller from the marked locations.
 - Use a hand-held rover to measure at the marked locations.
 - Average the rover GPS measurements if the roller GPS measurement is at the center of the front drum.
 - The differences between the roller GPS and rover measurements shall be within ±12 inches (±300 mm) for northing and easting.
IC Data Types

IC data are generally in two forms: *Raw Data* and *Gridded Data*.

- **Raw Data**: Raw data are recorded during compaction operations prior to the gridding process. Raw data consists of one data point for a roller drum at approximately 10 Hz or 1 ft. interval. Therefore, the data mesh or data footprint is about the drum width by 1 ft. Both vibratory and non-vibratory data are normally recorded.

- **Gridded Data**: Gridded data are processed from raw data by refining the data mesh. Raw measurement data are duplicated over the meshes for the entire drum width (i.e., multiple data points cover the drum width). The refined data mesh size is generally 1 ft. by 1 ft. in horizontal directions. One of the purposes of this process is to track partial drum overlaps among passes. It is anticipated that the gridding rule will be included in a future standard.

The raw data and gridded data are illustrated in Figure 15.

![Figure 15. Raw data vs. gridded data.](image-url)
The gridded data are in two sub-forms:

- **All-Passes Data**: All-passes data include all measurements within a given mesh. All passes are generally used to build compaction curves in order to establish rolling patterns.
- **Final Coverage Data**: Final coverage data contain measurements from the last passes within a given mesh. Final coverage data can be used to assess the end results of compaction.

Gridded all-passes data and final coverage data are illustrated in Figure 16.

Starting Veta 4.0+, only All-Passes Data is required to import to Veta as the Final Coverage Data will be automatically generated based on the All-Passes Data.

It is anticipated Only Raw Data will be required to import to Veta in the future.
Figure 17. An example of pass count map of final coverage data.
Figure 18. An example of progress of pass count maps of all-passes data.
IC Data Contents

The following requirements are consistent with those in the AASHTO PP 81 Standard Practice for Intelligent Compaction Technology for Embankment and Asphalt Pavement Applications.

For the purpose of effective data exchange, the IC data files need to include essential IC data header and essential data blocks. Data header consists of information regarding the measurement data in the data blocks (Table 1). Data blocks consist of all measurement data while each measurement point or block includes all essential elements (Table 2).

Table 1. Essential IC Data Header

<table>
<thead>
<tr>
<th>No.</th>
<th>Field Name/Definition/Unit</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Section title</td>
<td>I-95 NB S1</td>
</tr>
<tr>
<td>2</td>
<td>Layer number</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Machine trade name</td>
<td>My Brand</td>
</tr>
<tr>
<td>4</td>
<td>Machine ID (serial number)</td>
<td>Machine1234</td>
</tr>
<tr>
<td>5</td>
<td>Drum configuration (1: single drum; 2: double-drum)</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Drum width (m)</td>
<td>2.007</td>
</tr>
<tr>
<td>7</td>
<td>Drum diameter (m)</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>Machine weight (metric ton)</td>
<td>14.0</td>
</tr>
<tr>
<td>9</td>
<td>Data reporting interval in the direction 90 degrees to the roller moving direction (mm)</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Data reporting interval in the roller moving direction (mm)</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>EPSG coordinate system code (0 for non-EPSG coordinate system)</td>
<td>3745</td>
</tr>
<tr>
<td>12</td>
<td>Non-EPSG coordinate system zone name</td>
<td>NA</td>
</tr>
<tr>
<td>13</td>
<td>Name index of ICMV (1: Kb, 2: Evib, 3: CMV, 4: HMV, 5: CCV, 6: MDP, 7: Other)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>IC Data type (1: Raw data, 2: Gridded all–passes data, 3: Gridded final coverage data)</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>Number of IC data points</td>
<td>100000</td>
</tr>
</tbody>
</table>

Notes:
- Item 2: A layer is a construction layer that may consist of one or more lifts.
- Item 3: The machine trade name is for the host roller regardless whether it is a retrofit system or not.
- Item 4: Machine ID is required to filter data if a project file consists of data from multiple machines.
- Items 6 to 8: Machine weight, drum width, and drum diameter are used to compute the Nijboer number to assess the risk of ground or asphalt buckling or cracking during compaction.
- Items 9 and 10: Data reporting intervals are applied to both raw and gridded IC data.
- Item 11: The European Petroleum Survey Group (EPSG) geodetic parameter dataset is a structured dataset of coordinate reference systems and coordinate transformations. EPSG code covers GPS, UTM, State plane NAD 1983, and others. For example, EPSG 3745 represents UTM 15N.
- Item 12: An example of non-EPSG is Minnesota Dodge county coordinate system that can be parsed and recognized by Veta.
- Item 13: ICMV can be either from OEM or a retrofit system. ICMV for a retrofit system can be from a different manufacturer than the one for the machine.
Table 2. Essential Elements for Each IC Data Block.

<table>
<thead>
<tr>
<th>No.</th>
<th>Data Field Name/Definition/Unit</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Date Stamp (YYYYMMDD)</td>
<td>20080701</td>
</tr>
<tr>
<td>2</td>
<td>Time Stamp (HHMMSS.SSS)</td>
<td>090504.001</td>
</tr>
<tr>
<td>3</td>
<td>Longitude (decimal degrees) or Easting (m)</td>
<td>94.85920403</td>
</tr>
<tr>
<td>4</td>
<td>Latitude (decimal degrees) or Northing (m)</td>
<td>45.22777335</td>
</tr>
<tr>
<td>5</td>
<td>Height of ground above WGS84 geoid (m)</td>
<td>339.945</td>
</tr>
<tr>
<td>6</td>
<td>GPS flag (1: valid, 2: invalid)</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Construction lift number</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Current compaction mode (1: steel vibration drum; 2: steel oscillation drum, 3: static drum; 4: pneumatic tire)</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Current pass number</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>Direction index (1: forward, 2: reverse)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Roller speed (km/h)</td>
<td>4.0</td>
</tr>
<tr>
<td>12</td>
<td>Vibration frequency (vpm)</td>
<td>3500.0</td>
</tr>
<tr>
<td>13</td>
<td>Vibration amplitude (mm)</td>
<td>0.6</td>
</tr>
<tr>
<td>14</td>
<td>Temperature flag (1: valid, 2: invalid)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>Temperature (°C)</td>
<td>120.0</td>
</tr>
<tr>
<td>16</td>
<td>ICMV flag (1: valid, 2: invalid)</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>ICMV for the last vibratory pass</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Notes:
- Items 1 and 2: The date/time need to be recorded as local time.
- Item 2: The resolution of 0.001 second is required to differentiate data points during post processing for viewing and analysis.
- Items 3 to 4: The storage can be either GPS or coordinates, but the numbers need to be precise within 1cm. For example, at least 8 decimal places are needed for GPS.
- Item 6: GPS flag is invalid when the status is at non-RTK mode caused by losing GPS correction signals or others.
- Item 7: Construction lift number is required even when there is only one lift for a specific layer. Both layer and lift numbers are counted in consecutive sequence from the bottom up.
- Item 9: Current roller pass number is the counts of roller machine passes, instead of individual drum passes, within a given mesh for a construction lift. It is an accumulated value of passes of all compaction modes. For example, a total passes of 5 consists of 3 vibratory passes and 2 static passes.
- Item 11: Direction index is referenced to machine configuration/movement instead of traffic directions.
- Item 16: Temperature flag is invalid when temperature sensors or recording is faulty.
- Item 17: ICMV flag is invalid when starting/stopping a machine or when sensors are faulty or absent.
- Item 18: The unit of ICMV should be either unitless or in SI. That is Kb [MN/m] and Evib [MN/m²].
- Accumulated vibratory passes will be needed in the future for using all passes data to produce a compaction curve (i.e., ICMV vs. pass counts) and for using final coverage data to access the end results of ICMV.
Figure 19. An example of statistics of final coverage data.

Figure 20. An example of compaction curves and correlation based on all passes data.
PMTP Data Elements

PMTP Systems

The available PMTP systems in the market use either thermal scanner or camera to measure thermal profiles right behind the paver screed.

Figure 21. MOBA PMTP System – PAVE-IR

Figure 22. MOBA PMTP System Components– PAVE-IR
Figure 23. Vögele PMTP System – RoadScan

Figure 24. Vögele PMTP System Components – RoadScan
PMTP Data Types

PMTP records thermal profiles, paver speeds and paver stops.

Figure 25. MOBA PAVE-IR – Thermal Profile Grids
PMTP Data Contents

The following requirements are consistent with those in the AASHTO PP 80 Standard Practice for Continuous Thermal Profile of Asphalt Mixture Construction.

Table 3. Required Information in Data Header – AASHTO PP80 PMTP Data

<table>
<thead>
<tr>
<th>Description</th>
<th>Example Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agency project number, highway and/or section title</td>
<td>Highway 77</td>
</tr>
<tr>
<td>Machine trade name</td>
<td>ABC Company</td>
</tr>
<tr>
<td>Machine ID</td>
<td>Temp Bar</td>
</tr>
<tr>
<td>Lateral spacing between surface temperature measurements, mm [in.]</td>
<td>305 [12]</td>
</tr>
<tr>
<td>Longitudinal spacing between surface temperature measurements, mm [in.]</td>
<td>305 [12]</td>
</tr>
<tr>
<td>Vertical distance between temperature sensor(s) and mat, mm [in.]</td>
<td>305 [120]</td>
</tr>
<tr>
<td>Reporting resolution for independent surface temperature data—in the paver moving direction, mm [in.]</td>
<td>305 [12]</td>
</tr>
<tr>
<td>Number of lateral surface temperature measurements/sensors</td>
<td>10</td>
</tr>
<tr>
<td>Number of surface temperature measurement data blocks</td>
<td>5000</td>
</tr>
</tbody>
</table>

Table 4. Required Information in Each Data Block – AASHTO PP80 PMTP Data

<table>
<thead>
<tr>
<th>Data Field Name</th>
<th>Example Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date stamp</td>
<td>20130607 (YYYYMMDD)</td>
</tr>
<tr>
<td>Time stamp</td>
<td>090504.0 (9 hr 5 min 4.0 s)</td>
</tr>
<tr>
<td>Longitude, decimal degrees, with at least 8 significant digits</td>
<td>94.85920403</td>
</tr>
<tr>
<td>Latitude, decimal degrees, with at least 8 significant digits</td>
<td>45.22777335</td>
</tr>
<tr>
<td>Distance, m [ft]</td>
<td>0.3 [1]</td>
</tr>
<tr>
<td>Direction heading, degree angle, clockwise from the north; or calculated value, in Veta, using values from the other data blocks, m/min [ft/min]</td>
<td>[45]</td>
</tr>
<tr>
<td>Speed</td>
<td>9.1 [30]</td>
</tr>
<tr>
<td>Surface temperature reading/Location 1, °C [°F]</td>
<td>143 [290]</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Surface temperature reading/Location N, °C [°F]</td>
<td>149 [300]</td>
</tr>
</tbody>
</table>

Surface temperature readings/locations are numbered from 1 to N, left to right, in the direction of paving.
AASHTO ICT Data Standard

The purpose of the upcoming AASHTO Standard Specification for File Format of Intelligent Construction Data is to facilitate ICT data exchange.

Figure 27. AASHTO ICT Data Standard

Once all vendors and Veta implement this data standard, this document will be obsolete.

The summary of the AASHTO IC data is as follows:
• Binary format for data
 o Performance
 o Space conservation
 o Protection against casual modification
• Text format for Metadata (data descriptions)
 o Easier for parsing and interpretation
• File name extension
 o “TDS” (Tagged Data Storage)

The file structure is summarized as:
• Blocks – Sections
• Sections
 o [file-headers]
 o [lookup-tables]
 o [data-headers]
 o [data-source]
 o [log-data]
• Self-describing (all org data preserved)

• One set coordinates per timestamp
• One machine per file
• Allow multiple sensors
• Allow coord. offsets for sensors
• Store measured data, not calculated values

Data Storage Options include:
• Sensor Section: After all measurements are done. **Best Computing Performance**
• Log Data Section: During measurement. **Most Compact for Data Transmission**
BOMAG IC Data

System Summary

The Bomag IC system is summarized in Figure 28.

<table>
<thead>
<tr>
<th>Roller</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>double drum</td>
<td>single smooth drum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Panel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BCM-05 Office 4</td>
<td></td>
</tr>
</tbody>
</table>

Figure 28. Bomag IC roller and IC system.
The Bomag IC onboard documentation system is called BCM system (currently Version 4.0.2623 +). The system is designed to accurately record and store continuous compaction data (Evib, type of roller, frequency, amplitude, and operating speed) and the corresponding roller locations from GPS signals. The tracking of the roller is achieved with a mobile GPS receiver on the roller. If higher GPS accuracy is needed, a stationary reference receiver or a GPS reference service (base station) can be used. Depending on the available onsite GPS, the accuracy of locations can be to be within 2 inches. The BCM system offers convenient measurement data management and extensive documentation and evaluation possibilities. After data has been transferred to a computer via USB memory sticks, BCM Office software can then be used to perform further analysis (see Figure 29).

![Bomag IC onboard BCM documentation system and control panel in the roller cabinet.](Courtesy of Bomag)

Figure 29. Bomag IC onboard BCM documentation system and control panel in the roller cabinet.
Data Organization

The Bomag IC data are organized in a hierarchical data structure: project, lot, layer, and field. The data management structure needs to be setup prior to the compaction and data collection. An example of the hierarchical data structure is shown on the BCM Open dialogue in Figure 30.

![Open field](image)

Figure 30. Hierarchical structure of Bomag IC data.

Data Export Procedures

Bomag IC data can be downloaded from the onboard display unit using a USB flash drive. Users should be cautious about how to setup BCM prior to data collection during compaction following a hierarchical project structure: Project/Lot/Layer/Field. The downloaded files need to be restored to a computer by using the BCM Office software prior to the export process. Consult the BCM Office users’ manual for further details.

View the restored data using the BCM Office software:

1. Use File/Open, and select a specific Project/Lot/Layer/Field.
2. Inspect the data by using various viewing options.
Export Bomag IC data to CSV files using the BCM Office software:

1. Select File/Export/CSV from the software menu.

2. Under the “Values available for export”, select all items and click the double-arrow button pointing to the right.

3. Select “Export data over complete width (grid data)”.

4. Select the default “,” as Delimiter.

5. Select “All passes”.

6. Click the folder icon and rename the export file as “*.csva” (CSV files for all passes data).

7. Click Export to export to the csva file.

8. Select Last Pass and repeat the process to export final coverage data and save as *.csvp file.

9. Both the *.csva and *.csvp files can be readily imported to Veda 4.0+.
Caterpillar IC Data

System Summary

The summary of the Caterpillar IC system is presented as follows.

<table>
<thead>
<tr>
<th>Rollers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single smooth drum</td>
</tr>
<tr>
<td>Single drum pad foot</td>
</tr>
<tr>
<td>Double drum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onboard Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisionLink</td>
</tr>
</tbody>
</table>

Figure 31. Caterpillar IC System.
Viewing Programs

The Caterpillar IC system uses the Trimble CCS 900 as an onboard, in-cab, three dimensional (3D) display. The display is equipped with a keypad that allows the operator to interface with the system using push buttons and a color monitor. The operator can then view real-time information, such as machine location and speed, drum amplitude, vibration frequency, and number of passes, relative to the design plan. This system uses 3D design files that are stored on a CompactFlash data card and inserted into a slot next to the keypad.

![CS900 onboard display](image)

Figure 32. CS900 onboard display.

VisionLink is a web-based solution that includes IC data management for the Trimble retrofit IC system. IC data can be wirelessly transmitting IC data to the VisionLink at a 5-10 min. interval when cellular coverage is available. Manual upload to VisionLink will be needed if cellular coverage is unavailable. In this case, uses need to transfer the *.tag files from the CS900 unit, use the Trimble Business Center to generate a DC file, then logon to VisionLink to create an appropriate project and upload the files. Contact Caterpillar/Trimble/SITECH for further details.

Data Management

The Caterpillar IC data are managed with the VisionLink.

Very Important: Prior to any compaction for a given lift of a section, a specific “On Machine Design” needs to set. Then, select the desired “Design” under the Project Data Filters prior to the data export. This would bypass current issues with time stamps and layers/lifts. Note that Veta current analyzes one lift at a time.
Figure 32. View data in VisionLink.
Data Export Procedures

2. Make sure the desired “Design” under the Project Data Filters is selected prior to the data export.

3. Ensure the No Lift Filter is selected.

4. Select Administration/Export from the menu.
5. Within the “Management Exports/Export Type” dialog, select the Export to Veta, Coordinates (Latitude/Longitude), and Output (All Passes) to export the all passes data. Click “Next – Details”

6. Within the “Management Exports/Details” dialogue, click “Next – Summary”

7. Within the “Management Exports/Summary” dialog, click “Export”
8. Select a target folder to save the exported zip file.

9. Click “Back – Details”, then “Back – Export Type” and Repeat the above steps for “Final Coverage”

10. Unzip both the last pass and all passes files to csv files. These csv files are ready to be imported to Veta.
Dynapac IC Data

System Summary

The Dynapac IC system is summarized in Figure 33.

Rollers

System

Documentation

Figure 33. Dynapac IC system.
Viewing Program

The Dyn@lyzer IC system displays and stores ICMV (CMV, Evib1, or Evib2) and temperature (for asphalt) data along with number of roller passes, vibration amplitude, vibration frequency, roller speed, etc.

![Figure 34. Dynapac Dyn@lzser IC Display](image)

Data Organization

The Dyn@lzser IC data is stored in a database under Project/Object/Layer. The original file can be exported to text files.

The Dyn@lzser IC system allows users to prepare a new project with different objects, layers and sections prior to the field work. A grid system can be selected to be used for positioning including UTM coordinates. Other grid systems can also be used based on transformation from WGS 84 to the desired local grid systems.

The Dyn@lzser documentation structure can be transferred to the roller computer using a USB memory stick after the data are recorded. Further objects, layers and sections can be added in the roller on-board computer if needed.

Data Export Procedures

Once the data is recorded, it can be viewed and analysed on the roller on-board computer. Users are strongly recommended to transfer the data to the office computer using a USB memory stick.

To export from database to text files:
1. Open a project in Dyn@lyzer software and select a desired Project/Object/Layer.

2. Connect USB-stick

3. Click “Export Text File”

The exported text data can be imported to Veta for further analysis.
Hamm/Wirtgen IC Data

System Summary

The Hamm/Wirtgen IC system is summarized in Figure 35.

<table>
<thead>
<tr>
<th>Rollers</th>
<th>Double drum</th>
<th>Single smooth drum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onboard Display</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 35. Hamm IC system.

Viewing Program

The HCQ-GPS Navigator software allows convenient data archival and evaluation:

- Logging of diverse data during the compaction process, e.g. DGPS position, compaction value, driving speed, frequency, amplitude, roller type.
- Geolines or graphics can be additionally provided in the project for orientation.
- Filtering of data based on dates/time, vibration status, temperature, and heights.
- Calibration against plate loading tests.
- Convenient data archival with data transfer via USB interface.
- Creation of result logs in digital format or as printouts.
- Export data for Veta analysis.
Data Organization

HAMM IC data need to transferred and stored locally under the following folder.
"C:\Users\Public\HammHcqData\Project"

HAMM IC data are stored in a folder that contains 7 sub-folders: Calibration, Dictionary, ErrorData, Export, PlanningData, Project, and Settings. The raw IC data are under the “Project” folder. The export files, once done, are in the Export subfolder.

![Folder structure](image)

Figure 36. HAMM HCQ software – Folder structure.

Data Export Procedures

HAMM IC data can be downloaded from the onboard display unit using a USB flash drive. Native HAMM IC data are organized in folders for any given project. The raw IC data are stored in binary files with the “hcq” extension under the “Project” subfolder. No naming convention is required.

View HAMM *.hcq data using the HCQ software:

1. Select File/Open Project from the menu.
2. Under the “Open project” dialogue, select the Project and Section and load the data.
3. Adjust the view setting to view desired IC maps. Note that HCQ allows split screens to view two types of data maps at the same time.
4. Use the Analysis/Filter setup to filter and view desired data.
Export HAMM *.hcq data to text files using the HCQ software:

1. Select File/IC Export All Data to export all-passes data.
2. A “File > IC Export Dialogue” would appear and show progress bars. Click the OK button once the Export is finished.
3. Use Windows’ file explorer to navigate to "C:\Users\Public\HammHcqData\Project" and select the current project name and its Export subfolder.
4. The exported data will be saved under the Export subfolder with *_amd.vexp as filename extension. Use only the front drum data to import to Veta. Normally the file name would consist of date stamp and “F” instead of “R” (e.g. Mainline Surface_IC_2070045F(2)_1_amd.vexp).
Figure 38. HAMM HCQ software – Export menu.

Figure 39. HAMM HCQ software – IC Export all data.
LEICA GEOSYSTEMS IC Data

System Summary

The LEICA GEOSYSTEMS IC retrofit system.

<table>
<thead>
<tr>
<th>Roller Components</th>
<th>IC retrofit can be mounted on selected Soil Compactor for Pass count and CMV (Compactor Meter Value) readings.</th>
</tr>
</thead>
</table>

Documentation

System ConX.
Viewing Program

The Leica Geosystems IC documentation system is Leica ConX web service with the ability to export files to Veta.

Open internet browser and select your Leica Geosystems ConX start page.
Data Export Procedures

1. Navigate to the Productivity tab.

2. Use the filters (and advanced filters if necessary) to find the data needed.

3. Click the Export button.
4. Select “Veta - CGT” and click the Export button.

5. Download the report.cgt.zip file and unzip it to your local computer.
6. The CGT.GZ files can then be imported to Veta 5.2+

Open Veta 5.2+ and create new project. When done add files from your folder with ConX exports. Optionally, users can import the zip files from ConX (*.gz) directly to Veta.
MOBA MCA-3000

System Summary

The summary of the MOBA Compaction Assistant (MCA-3000) system is shown in the table below.

Roller

<table>
<thead>
<tr>
<th>Number</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Touch screen display</td>
</tr>
<tr>
<td>2</td>
<td>GNSS antenna</td>
</tr>
<tr>
<td>3</td>
<td>WIFI antenna (optional)</td>
</tr>
<tr>
<td>4</td>
<td>GSM antenna (optional)</td>
</tr>
<tr>
<td>5</td>
<td>Uninterruptible power supply</td>
</tr>
<tr>
<td>6</td>
<td>T-connector (optional)</td>
</tr>
<tr>
<td>7</td>
<td>IR temperature sensor (optional)</td>
</tr>
<tr>
<td>8</td>
<td>Acceleration sensor (optional)</td>
</tr>
</tbody>
</table>
On-board display

Documentation

Xml Report
MOBA Compaction Assistant (MCA-3000) - consisting of a GNSS antenna, an on-board computer, a touch screen, a temperature sensor (optional) and an acceleration sensor (optional) - supports the operator by displaying the number of roller passes, surface temperature and compaction values of the whole project. Depending on the GNSS antenna, the position of the roller is recorded with a decimeter-to-centimeter-level accuracy. The Compaction Assistant enables the operator to achieve the preset compaction by evenly compacting the entire working area. It results in a homogenous compacted material preventing later damages to the road surface.

The fleet configuration enables the operator to see the static and vibratory passes of all the rollers on the same project. Therefore, the operators have a whole picture of the project and improve compaction by working in collaboration.

Data Management

After finishing the work, a work report of the whole project can be generated for post-processing, which is either saved on a USB stick or transferred to the cloud server. The file naming convention can be taken from the MCA-3000 user manual. The report can be viewed directly in Internet Explorer or in the PC desktop application CEval.
Data Export Procedure

Select the project on the on-board display.

Generate the report on the on-board display.
Unzip the report to a local directory on the PC. The data are contained in the csv file.

Start CEval.exe and load MCA report (csv) from the above location.
Load and view the data.
1. Choose raster size: 0.25x0.25cm.
2. Import the data.
3. Center the map to the worksite.
4. Show the map.

Generate the Veta export file.
1. Select the machine(s). For each selected machine a separate export file will be generated.
2. Set “Export options” as shown on the screenshot.
3. Click the “Csv” export button.
4. You will be asked to enter the location and the name for the exported file.

Load the exported file(s) to Veta using the “Open” button. The type of the import file will be recognized as “MOBA Compactor”.
Sakai IC Data

System Summary

The Sakai IC system is summarized in Figure 40.

Roller

Control Panel

Documentation

TopCon SiteLink web service with the ability to export files to Veta

Figure 40. Sakai IC system.
Viewing Program

The Sakai IC documentation system is TopCon SiteLink web service with the ability to export files to Veta.

![TopCon sitelink3D web solution](image)

Figure 41. TopCon sitelink3D web solution.
Data Export Procedures

1. Select “Reports” from the Menu.

2. Click “New Report” on the REPORTS screen.

3. Select “Pln Report”
4. Provide report Description, select a region, select As Build Layer, select PLN format (all-passes), Set start/end Date/time, then click Generate Report.
5. The Report Generation is under progress with notes “Running (started a few seconds ago)”

6. Once it is complete, a report range would appear.

7. Click the gear wheel symbol and select Email.

8. Enter the email address for receiving a download link for the PLN report.

9. Download the report.zip and unzip the PLN file to your local computer. Rename the report.pln file to a more descriptive file name. The PLN file can then be readily imported to Veta.
Trimble IC Data

System Summary

The summary of the Trimble IC retrofit system is presented as follows.

Rollers

- For double drum rollers
- For single drum rollers

Onboard Display

- VisionLink

Documentation

- Figure 42. Trimble retrofit IC System.
Viewing Programs

Trimble retrofit IC systems use the Trimble CCS 900 as an onboard, in-cab, three dimensional (3D) display. The display is equipped with a keypad that allows the operator to interface with the system using push buttons and a color monitor. The operator can then view real-time information, such as machine location and speed, drum amplitude, vibration frequency, and number of passes, relative to the design plan. This system uses 3D design files that are stored on a CompactFlash data card and inserted into a slot next to the keypad.

![Figure 32. CS900 onboard display.](image)

VisionLink is a web-based solution that includes IC data management for the Trimble retrofit IC system. IC data can be wirelessly transmitting IC data to the VisionLink at a 5-10 min. interval when cellular coverage is available. Manual upload to VisionLink will be needed if cellular coverage is unavailable. In this case, uses need to transfer the *.tag files from the CS900 unit, use the Trimble Business Center to generate a DC file, then logon to VisionLink to create an appropriate project and upload the files. Contact Caterpillar/Trimble/SITECH for further details.

Data Management

The Caterpillar IC data are managed with the VisionLink.

Very Important: Prior to any compaction for a given lift of a section, a specific “On Machine Design” needs to set. Then, select the desired “Design” under the Project Data Filters prior to the data export. This would bypass current issues with time stamps and layers/lifts. Note that Veta current analyzes one lift at a time.
Figure 43. View data in VisionLink.
Data Export Procedures

2. Make sure the desired “Design” under the Project Data Filters is selected prior to the data export.

3. Ensure the No Lift Filter is selected.

4. Select Administration/Export from the menu.
5. Within the “Management Exports/Export Type” dialog, select the Export to Veta, Coordinates (Latitude/Longitude), and Output (All Passes) to export the all passes data. Click “Next – Details”

6. Within the “Management Exports/Details” dialogue, click “Next – Summary”

7. Within the “Management Exports/Summary” dialog, click “Export”
8. Select a target folder to save the exported zip file.

9. Click “Back – Details”, then “Back – Export Type” and Repeat the above steps for “Final Coverage”

10. Unzip both the last pass and all passes files to csv files. These csv files are ready to be imported to Veta.
TOPCON IC Data

System Summary

The TOPCON IC retrofit system is summarized in Figure 40.

Roller

IC retrofit can be mounted on selected roller models.

Onboard Display

TopCon SiteLink web service with the ability to export files to Veta

Documentation

Figure 44. TOPCON IC Retrofit system.
Viewing Program

The TOPCON IC documentation system is SiteLink3D web service with the ability to export files to Veta.

![TopCon sitelink3D web solution](image)

Figure 45. TopCon sitelink3D web solution.
Data Export Procedures

1. Select “Reports” from the Menu.

2. Click “New Report” on the REPORTS screen.

3. Select “Pln Report”
4. Provide report Description, select a region, select As Build Layer, select PLN format (all-passes), Set start/end Date/time, then click Generate Report.
5. The Report Generation is under progress with notes “Running (started a few seconds ago)”

6. Once it is complete, a report range would appear.

7. Click the gear wheel symbol and select Email.

8. Enter the email address for receiving a download link for
the PLN report.

9. Download the report.zip and unzip the PLN file to your local computer. Rename the report.pln file to a more descriptive file name. The PLN file can then be readily imported to Veta.
Direct Download from TOPCON Cloud to Veta

Starting Veta 5.0, the TOPCON raw data can be downloaded directly from the TOPON Cloud to Veta.

The user needs to have a login credential and setup in Veta. Then, select the account, site, and time frame to download data.
Once the files are downloaded, users can follow normal procedures to view and analyze the data.
VOLVO IC Data

System Summary

The VOLVO IC retrofit system is summarized in Figure 40.

Figure 46. VOLVO IC Retrofit system.

Volvo proprietary IC software
Viewing Program

The VOLVO IC system makes use of Android–based tablets. The system can display the pass count map, temperature map, and estimated density map as follows.

![Pass Count](image1)

![Temperature](image2)

![Estimated Density](image3)

Figure 47. VOLVO IC Display.
Data Export Procedures

The VOLVO IC tablets can export IC data in csv format directly to an USB drive. The csv files can then be imported to Veta.

1. Select Project

2. Select USB
3. Make sure USB stick is inserted in back of display.
Select OK

4.

5.
Remove USB and download to PC.
There are two data files in each zipped project file: all-passes data and final coverage data.
The file name convention is: Lift number + UTM zone + Date + Time.
“_final_coverage” denotes the final coverage data.
MOBA PMTP Data

System Summary

The summary of the MOBA PAVE-IR paver-mounted thermal profile system is presented as follows.

<table>
<thead>
<tr>
<th>MOBA PAVE-IR paver-mounted thermal profile system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
</tr>
<tr>
<td>![Hardware Image]</td>
</tr>
</tbody>
</table>

| **Onboard Display** |
| ![Onboard Display Image] |

| **Documentation** |
| ![Documentation Image] |

Figure 48. MOBA PAVE-IR Paver-Mounted thermal profile system.
Viewing Programs

The viewing program is called MOBA Pave-IR PPM (Pave Project Manager). Thermal profile is displayed a color-coded maps vs. distance. Other charts include: Time (paver stops) and Speed.

![Figure 49. MOBA Pave-IR PPM Software.](image)

Data Management

The thermal profile data are stored in either *.log (older format) or *.paveproj formats.

Data Export Procedures

All MOBA thermal profile data (*.log or *.paveproj) can be imported directly to Veta. There is no need for data export.
Direct Download from MOBA Cloud to Veta

Starting Veta 5.0, the MOBA PMTP data can be downloaded directly from the MOBA Cloud to Veta.

The user needs to have a login credential and setup in Veta. Then, select the account, site, and time frame to download data.
Once the files are downloaded, users can follow normal procedures to view and analyze the data.
Contact Information

Rebecca A. Embacher
Advanced Materials and Technology Engineer
MnDOT Office Of Materials & Road Research
1400 Gervais Avenue, M.S. 645
Maplewood, MN 55109-2044
T: 1+ (651).366.5525
Rebecca.Embacher@state.mn.us

George K. Chang, PhD, PE (NJ)
The Transtec Group, Inc
6111 Balcones Dr. Austin, TX 78731
T: 1+ (512) 451-6233
GKChang@TheTranstecGroup.com

Report Prepared by

George K. Chang, PhD, PE (NJ)
Jason Dick
The Transtec Group, Inc.